• Home
  • Archive
  • Tools
  • Contact Us

The Customize Windows

Technology Journal

  • Cloud Computing
  • Computer
  • Digital Photography
  • Windows 7
  • Archive
  • Cloud Computing
  • Virtualization
  • Computer and Internet
  • Digital Photography
  • Android
  • Sysadmin
  • Electronics
  • Big Data
  • Virtualization
  • Downloads
  • Web Development
  • Apple
  • Android
Advertisement
You are here: Home » Approaches of Deep Learning : Part 2

By Abhishek Ghosh April 23, 2018 5:12 am Updated on April 25, 2018

Approaches of Deep Learning : Part 2

Advertisement

In our previously published article namely Approaches of Deep Learning : Part 1, we explained the most important basics of artificial intelligence, machine learning, deep learning.
Those were among the fundamentals which are important for further understanding of the scientific work topic. In this Approaches of Deep Learning : Part 2, we will focus around Benefits and use cases, Artificial neural network, Overview of use-cases of Deep Learning.

Table of Contents

  • 1 Introduction
  • 2 Benefits and Application Examples
  • 3 Artificial Neural Network
  • 4 Use-Cases of Deep Learning
  • 5 Application Examples
  • 6 Conclusion

 

Approaches of Deep Learning : Benefits and Application Examples

 

Deep Learning can be used in a variety of applications.

Advertisement

---

Recognition of standalone objects in pictures and videos: Deep learning algorithms allow a machine to classify and recognize objects when the same object looks a little different. Example: The deep learning program has learned what a bus operating in a city looks like or what features characterize a bus. However, when it sees pictures of buses traveling in other country, it still recognizes these as buses because the essential features of a bus can be applied.

Detecting objects that are obscured, for example, by other objects to a certain extent: Deep Learning allows objects to be recognized, even though a certain area of ​​the searched object is obscured. The deep learning program knows a stop sign. However, a camera films a stop sign that is almost covered by a tree. However, the program recognizes the essential features such as color, shape and characters and recognizes a stop sign.

Voice recognition: Deep Learning makes it possible to communicate with machines by voice. The machines learn new words and word applications and independently expand their language repertoire. As an example, Apple’s Siri.

Translation of spoken texts: Deep learning makes it possible to convert spoken language into text. Also exotic languages, such as Chinese can be supported. Deep Learning Speech recognition algorithms recognize different pitches in such languages, which usually needs to be translated differently.

Advanced artificial intelligence in computer games: The artificial intelligence of many PC and console games used to be that the programmers predefined a set of rules and the object randomly decides which of the previously defined actions should be triggered. Through deep learning, a computer object can learn from the player’s behavior and calculate its own routines. Thus, the computer opponent becomes more unpredictable.

Predictive Analytics: Deep Learning makes it possible, for example, to continuously analyze customer data from a CRM system in order to make certain predictions about future customer behavior.

 

Artificial Neural Network

 

Artificial neural networks are a composite of many small artificial neurons and belong to the category of artificial intelligence. This is based on the biological neural networks. Neural networks are mathematical models that are based on the human brain. Human brain has more than 10 billion neurons and nerve cells. A neuron consists essentially of a cell body, dendrites and an axon. Stimuli are absorbed via the dendrites and transmitted to the cell body or axon hill. This is responsible for the function of the neuron. It processes the different stimuli by adding up the stimuli. The shorter a dendrite, the stronger the appeal. Through the transmission of the stimuli, an excitation potential builds up on the axon hill. If the added stimuli exceed the threshold value of the excitation potential, an action potential is triggered. It is also controlled by “cell fires”. When the “cell fires”, the stimuli on the axon are relayed to the synapses. The synapses are connected to other neurons. One neuron is directly connected to 2000 other neurons. The stimuli are always processed in one direction only. This procedure is also called “transmitter / receiver” principle. The whole process is colloquially referred to as “thinking”.

Building Artificial Neuron

Artificial neurons are modeled on the neurons of the human brain. They have n inputs through which the stimuli can be absorbed. The output propagates the processed stimuli to other artificial neurons. You can work according to the all or nothing principle (1 or 0) or they work according to the input, which are dependent on thresholds. The thresholds are between 0 and 1 or -1 and +1 depending on the activation function. The inputs of an artificial neuron are the dendrites of a biological neuron. Each entrance has its own weighting. The input value is multiplied by the weighting. If all input values ​​have been multiplied by their weighting, then all values ​​in a sum function are added together. This sum function is an elementary component of an artificial neuron. The sum of the function is passed to the activation function. The activation function decides which value is output or displayed on the output.

Activation functions

To generate an output from an artificial neuron requires an activation function. It receives the sum function, ie the input values ​​depending on the weightings. The activation value can be arbitrary. As already explained, default values ​​are -1 and +1. The three most important activation functions are the jump function, the linear function and the sigmoid function. The jump function, also called the threshold function, generates a 1 if the result of the summation function is greater than or equal to 0, and if the result is less than 0, a 0 is output. Thus, a neuron with the threshold function can only carry something to the network when the neuron outputs a 1. With the linear function, the output increases linearly depending on the input values. The sigmoid function is the most realistic function of the three mentioned. It is a very useful non-linear function. The above mentioned activation functions are not limited to those few.

An artificial neural network consists of several artificial neurons connected by means of a connection. There are usually three layers in a network. An input layer, a hidden layer and an output layer. The input layer is responsible for data acquisition. The data can come from different sources, eg from other programs. The output layer provides the calculated information. The hidden layer includes all neurons which lie between the input layer and the output layer. The hidden layer is so called because it is not in direct contact with the outside world. The hidden layer can also consist of several layers. These networks are called multi-layer neural networks.

Approaches of Deep Learning Part 2

 

Use-Cases of Deep Learning

 

Usage in image recognition or face recognition is on the rise. For face recognition, it is necessary to extract important features from the input values ​​so that they can be used. There are already various facial recognition methods.

Template Matching: The most commonly used method is called template matching. Here, the face is compared with a template. A template is a predefined face, with the most important features of a face eg eyes, nose and mouth. The template must be of very high quality, so that different faces can be compared. For a face to be recognized, it has to be matched with many faces from a database. This creates a vector. This contains features that are similar to the face. However, this method is very computationally expensive.

Geometric features: The method extracts the positions of the most important features of a face in a vector. These features are the nose, the mouth and the eyes. The distances between the different features are also calculated and stored in a vector.

Fourier Transformation: The idea behind Fourier Transformation is to transform the input image and the comparison image into frequencies. Due to the frequency ranges, the images can be compared more easily.

Elastic graphs: The method puts up grids on the face. This grid is called Labeled Graph. Using the mesh and its nodes, an algorithm calculates the important features of a face. With a new face to be compared with the existing, the grid of the existing face is hung up. This grid is adjusted to look similar to the existing one. If this grid fits, then there is a match.

There are many areas where text recognition algorithms are used. In the following two different ways are presented.

Text recognition: Optical Character Recognition (OCR) means the automatic recognition of characters from a computer. Using algorithms, it recognizes printed characters. In this case, a printed or written text is optically scanned. Colloquially, one can say that the computer can copy the visual texts. The technology is mainly used in document, form evaluation to archival systems. To use this technology, you need not only a scanner, but also the right software that can convert the recognized text into Doc, HTML, PDF, or TXT. Following this, you can then work with the recognized text. We given a practical use case of using IBM Watson to analyze texts in a given Google Docs text document.

Text mining: Analyzing texts using a computer is still a tough challenge, but not impossible tasks for the algorithms. In order to analyze texts in terms of software, this presents a challenging task for the combination of linguistic and static methods. Text Mining is a largely automatic process for extracting specific information and knowledge from texts. For this purpose, techniques have been used that have been developed in areas such as Natural Language Processing (NLP), Information Retrieval, Information Extraction and AI. Text mining is considered a special feature of data mining. But one of the most important differences between these two information retrieval methods is in the database. In text mining, the values ​​are understood as an unstructured basis of analysis, while data mining is the first normal of relational database terminology. This means that the individual values ​​are atomic. Nonetheless, in Text Mining, the values ​​of the text can not be fully understood as an unstructured basis of analysis, because even these values ​​are already subject to a certain grammar. Furthermore, the text is structured by headings and paragraphs.

Speech processing: Speech processing can be divided into two types – Speaker-independent speech recognition and Speaker-dependent speech recognition. In speaker-independent speech recognition, the user can start speech recognition without a previous training phase. It is different with speaker-dependent speech recognition. In this case, the system must be trained before the first use on the user-specific peculiarities of pronunciation.

The homophones are a major problem in the language. Homophones are words that have a different meaning, but are pronounced the same.

 

Application Examples of Deep Learning

 

Deep Learning will be used in many areas in the future. Google and Apple already took advantage of deep learning in the smartphone operating systems Android and iOS. The speech recognition was implemented on them. Facebook uses the facial recognition process on uploaded photos of friends. But also in other sectors, such as advertising, finance or medicine finds usage of Deep Learning. A researcher Andrew Ng, has developed a prediction method for hard drive failure. In medicine, deep learning should be used to predict disease progression, for example in cancer. This procedure would revolutionize medicine. In drug development, deep learning could predict the best drugs for a given drug. We can find usage of Deep Learning in the field of Recognition of standalone objects in pictures and videos, Voice recognition, Translation of spoken texts, Advanced artificial intelligence in computer games, Predictive Analytics (predictions with probabilities) and so on.

 

Conclusion

 

The breakthrough of artificial intelligence or artificial neural networks was achieved by Google’s subsidiary company, DeepMind in 2016. Here, a human player was defeated by AlphaGO.

An artificial neural network is not very easy for a normal user to understand. To make this more transparent, Google has provided a “playground” for neural networks on a website of Tensorflow (http://playground.tensorflow.org) where easily multi-layered neural networks can be built together. The behavior at runtime, before, during and after the calculation, can be observed.

Google is currently researching on a deep learning system that can determine the location of the image on the basis of the pixels in a picture. In the initial tests, the computer is far ahead of humans.

In 1943, the early pioneers attempted the challenge of machine learning and neural networks. They believed that one could adapt the structure of the brain with the neurons as neural networks, with the goal of developing a simple method to teach machines to think. It is astonishing how at that time the idea could be even thought with so limitation of resources.

Tagged With voice recognition

This Article Has Been Shared 896 Times!

Facebook Twitter Pinterest

Abhishek Ghosh

About Abhishek Ghosh

Abhishek Ghosh is a Businessman, Surgeon, Author and Blogger. You can keep touch with him on Twitter - @AbhishekCTRL.

Here’s what we’ve got for you which might like :

Articles Related to Approaches of Deep Learning : Part 2

  • Big Data as a Service (BDaaS) Basics

    Big Data as a Service or BDaaS, is as if combination of SaaS, PaaS and DaaS. Self Hosting Big Data platform is time consuming and costly.

  • How To Install Apache Mesos With Marathon On Ubuntu 16.04 LTS

    Here Is How To Install Apache MeOS With Marathon On Ubuntu 16.04 LTS In Order To Integrate,Manage Multiple Servers Or Multi Cloud Environment.

  • IBM Analytics Demo Cloud : Free Hadoop, Ambari With SSH

    IBM Analytics Demo Cloud is intended to learn Hadoop, Ambari, BigSQL free of cost with SSH access & web console. Here is how to get started.

  • Real-time Big Data Analytics in Health Care Using Tools From IBM

    Goal of the article Real-time Big Data Analytics in Health Care Using Tools From IBM is to provide understanding of big data in the health.

  • Approaches of Deep Learning : Part 3

    Here is 3rd Part of Our Series on Approaches of Deep Learning. In this article, we will discuss the core components of deep learning.

Additionally, performing a search on this website can help you. Also, we have YouTube Videos.

Take The Conversation Further ...

We'd love to know your thoughts on this article.
Meet the Author over on Twitter to join the conversation right now!

If you want to Advertise on our Article or want a Sponsored Article, you are invited to Contact us.

Contact Us

Subscribe To Our Free Newsletter

Get new posts by email:

Please Confirm the Subscription When Approval Email Will Arrive in Your Email Inbox as Second Step.

Search this website…

 

Popular Articles

Our Homepage is best place to find popular articles!

Here Are Some Good to Read Articles :

  • Cloud Computing Service Models
  • What is Cloud Computing?
  • Cloud Computing and Social Networks in Mobile Space
  • ARM Processor Architecture
  • What Camera Mode to Choose
  • Indispensable MySQL queries for custom fields in WordPress
  • Windows 7 Speech Recognition Scripting Related Tutorials

Social Networks

  • Pinterest (24.3K Followers)
  • Twitter (5.8k Followers)
  • Facebook (5.7k Followers)
  • LinkedIn (3.7k Followers)
  • YouTube (1.3k Followers)
  • GitHub (Repository)
  • GitHub (Gists)
Looking to publish sponsored article on our website?

Contact us

Recent Posts

  • How to Do Electrical Layout Plan for Adding Smart Switches January 26, 2023
  • What is a Data Mesh? January 25, 2023
  • What is Vehicular Ad-Hoc Network? January 24, 2023
  • Difference Between Panel Light, COB Light, Track Light January 21, 2023
  • What is COB LED? How LED Chip On Board Works January 20, 2023

About This Article

Cite this article as: Abhishek Ghosh, "Approaches of Deep Learning : Part 2," in The Customize Windows, April 23, 2018, January 27, 2023, https://thecustomizewindows.com/2018/04/approaches-of-deep-learning-part-2/.

Source:The Customize Windows, JiMA.in

PC users can consult Corrine Chorney for Security.

Want to know more about us? Read Notability and Mentions & Our Setup.

Copyright © 2023 - The Customize Windows | dESIGNed by The Customize Windows

Copyright  · Privacy Policy  · Advertising Policy  · Terms of Service  · Refund Policy

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT